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Abstract—This consideration of the stretching of a square of thin elastic sheeting by equal
tensile forces acting in dead loading on the edges of the square is motivated by some carly
observations of Treloar. For any reasonable celastic materials the loading will certainly corre-
spond to some symmetric stretching but, it is shown here that depending on the form of the
strain energy function and for some values of load an asymmetric stretching can equilibrate the
symmetric loading as well as the more obvious symmetric streiching. Furthermore, the asym-
metric response. when it is a dynamical possibility. is stable while the symmetric response is
unstable. The phenomenon does not occur for nco-Hookean rubbers but does occur for the
elastic materials corresponding to many realistic strain energies. Mooney-Rivlin rubbers for
example.

1. INTRODUCTION

Because of the severe nonlinearities inherent in finite elasticity, the application of dead
loading to an elastic body often leads to multiple possibilities for the resulting defor-
mations. It is not uncommon in such cases for some of the possible deformations to
show an unexpected lack of symmetry. A well-known early theoretical example was
given by Rivlin[1], who examined homogeneous deformations of a unit cube of incom-
pressible neo-Hookean elastic material subjected to equal tensile forces. normal to each
of its faces. Rivlin showed that at least seven cquilibriuvm configurations are possible
when the tensile forces exceed a certain critical value, and of the scven. only one. the
undeformed configuration, has all the symmetries of the given loading. Furthermore.
on examination of the stabilities of the equilibria[2] for large values of the tensile forces.
he found that the symmetric configuration is unstable. Most people on first encountering
this result find it somewhat surprising.

Much less well known is an experimental example of this sort of asymmetric so-
lution to a dead-loading problem, which was obscrved at about the same time as Rivlin's
theoretical example. In the course of experiments on rubber, Treloar|3] stretched a
square of thin rubber sheeting by equal tensile forces acting on the edges of the square,
and observed that in some cases of high loading. the principal stretches corresponding
to the equal tensile loads were not equal. For experimental reasons the stretches in
these experiments were limited to values less than three. But despite this limitation,
anisotropies approaching fifteen percent were observed in the extreme cases; that is,
the two stretches differed by that amount. Treloar reported this odd behavior through
data without comment, because he was primarily interested in the failure of the data
to conform to certain predictions for neo-Hookean elastic sheets. Indeed, at the time,
the failure of the neo-Hookean model of rubber elasticity was unexpected enough that
Treloar[4] was careful to consider various experimental artifacts which might have
led to his results, and conclusively eliminate the possibility in each case. For the most
part, that discussion also confirms the occurence of the phenomenon we consider here.
The phenomenon was hardly noticed at the time, however, and since then seems to
have been largely forgotten or ignored; probably because shortly after Treloar's rev-
elation, convenient force-measuring devices of high mechanical impedance became
available. The techniques for measuring biaxial stretching of rubber sheets changed
accordingly and currently dead loading is seldom used for that purpose.

Shield[5] has examined the stability of uniformly stretched elastic membranes
under dead loading by calculating to second order the effect on strain energy of a small
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displacement superposed on an initial finite deformation. His analysis reveals instability
in certain cases of biaxial stretching of an elastic sheet with a suitable strain-energy
function, which he might have used to explain Treloar's observations of asymmetry
for rubber under symmetric loading. However, Shield was probably unaware of thesc
data and chose a strain energy of an empirical form which did not generate the asym-
metry. He therefore did not examine this possibility in greater detail.

In this work we shall analyze the phenomenon observed by Treloar. A simplc
elasticity problem, modeling Treloar’s experiment, will be shown to lead to multipie
solutions with asymmetry. For a Mooney-Rivlin type of material, or for other more
realistic materials, this asymmetric solution must be expected to occur when sufficiently
large stresses can be supported by the elastic sheet. On the other hand, for neo-Hookean
rubber, the model does not lead to asymmetric solutions, and thus the mechanism is
distinct from that displayed by Rivlin’s cube.

2. THE BASIC EQUILIBRIA

Consider a unit square, cut from a thin clastic sheet, stretched and held in equi-
librium by tensile forces applied uniformly in the plane of the sheet and normal to the
cut edges. The square surfaces of the sheet are traction free. We consider homogeneous
isochoric deformations which take the square into a rectangle by pure stretching. If
the sheet is composed of incompressible isotropic material with a strain-energy func-

tion, W, we can write down the following equation for the stress acting in the direction
A,

, i
on = MW, = 5 Wa +p, (2.1)

where o, is the stress, W, and W, are the derivatives of the strain-energy function with
respect to the first and second invariants of the strain, and p is an arbitrary isotropic
stress associated with the constraint of incompressibility. Similar equations apply for
the stress in the direction of the other two principal stretches. In these equations. W
and its derivatives are defined by the following relations:

of of
W = f( =, Wy = =, (2.2
FA D, Wy == 2 = o
L= A 4 4 — =L+ 54z (2.3)
= [ Ayl e B -

where A and @ are principal stretches in the plane of the sheet. Because the material
is incompressible the stretch in the thickness direction is 1/(Ap).

No tractions act on the square surfaces of the sheet, and therefore the force in the
thickness direction must be zero. This fact allows us to evaluate the quantity p as
follows:

1

= NpiW, — —— W,. 2.4)
p [ 2 }\‘_“‘2 |
The force acting in the X\ direction, f,, is given by
fr = z Tx (2.5)
A

where 7 is the thickness of the original undeformed unit-square sheet. A similar equation
gives the force in the p direction.
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From cqns (2.1), (2.4) and (2.5). and the similar cquations for the w direction, we
can write the following expressions lor the forces acting on the edges of the unit square:

At -1 ,
[y = ’—%}L:— (Wi + w-Wa,), (2.60)
_ PITREE .
fu = ’_;L_u‘* (W, + \2Wa). (2.6b)

We now stipulate that the loads on the edges of the sheet are equal in magnitude, so

that we can equate f, with f,, and factor out the thickness from the resulting equation
to get

N = WIAR + DW, + (A2 + A+ w7 = Mu)Wa] = 0. 2.7
One root of this equation is the symmetric solution, A = w. This solution describes a
simple equibiaxial stretch, taking the unit square into another square.

Of greater interest are deformations corresponding to the vanishing of the second
factor in eqn (2.7); that is, the roots of the following equation:

VP + DWW+ (A + A+ - M)W, = 0. (2.8)
When W: is not zero we can express eqn (2.8) in the following form:

W.=K_)\“p.“’—(}\2+)\p,+p3)
W, AMpd + 1

, 2.9

which should be compared with inequality (4.8) of Shield[5].

It is obvious that the right side of this equation is always less than Ap. and thus
if K is equal to or greater than Ap, there are no roots possible. Certainly for a neo-
Hookean material (for which W is zero) no roots are possible. Therefore a neo-Hoo-
kean material can only respond to this symmetric loading (within the limitation of
homogeneous deformations) by deforming symmetrically. If the ratio K is always pos-
itive and finite, however, this equation will have roots determining a curve in the A, p
plane: each point on the curve representing a homogeneous deformation which equil-
ibrates equal tensile loads on the edges of the unit square.

We shall now consider the consequences when K, the ratio of the derivatives of
the strain-energy function, is a constant; a restriction which includes materials of the
Mooney-Rivlin type. Indeed, for K to be a constant it is necessary and sufficient that
the strain-energy be solely a function of the variable I + II K. The Mooney-Rivlin
strain energy corresponds to the simple case of proportionality. When K is a positive
finite constant, eqn (2.9) defines a curve in the plane of A, u. The hyperboloid of Fig.
1 labeled K = 5 is an example. It is more interesting, however, to look at the corre-
sponding curve in the plane of the deformation invariants. In that plane each possible
homogeneous deformation is represented by a unique point within a region of the plane
bounded by two smooth arcs forming a cusp[6] at the point (3,3). This construction
can be seen in Fig. 2. The upper arc represents all states of equal biaxial stretching of
the sheet, and it is thus the locus of symmetric roots of eqn (2.7) for tensile loads. For
isotropic incompressible elastic materials, this curve of symmetric solutions does not
depend upon details of the strain-energy function. Each point along this curve corre-
sponds to a stretching force determined by egn (2.6a) or, equivalently in this case,
eqn (2.6b) and the condition A = p, thus

f~)\(\_‘

W e (K + \%). (2.10)
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Fig. 1. Loci of asymmetric equilibria on the A-p. plane for various values of K.
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Fig. 2. Asymmetric solutions in the 1-1I plane for K = 3, 4, S, 6, 7.

For a given A the point along the curve in the plane of invariants can be found from
eqns (2.3) and the condition A = p; that is,

1
I=2}\2+P, II=)\4+F. (2.11)

For any positive finite value of constant K another curve in the plane of the
invariants, the locus of asymmetric equilibria, is determined by eqn (2.9). This curve
will generally intersect the curve of symmetric equilibria at a point which depends on
the value of K. By setting A = p in eqn (2.9), we can find a relation for the stretch at
this intersection:

AN = 3)
K=—F—=
AS + ]
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Fig. 3. Plot for finding A at intersection of loci of symmetric and asymmetric equilibria.

Figure 3 is a plot of the right-hand side of this equation as a function of stretch. Even
for a strain energy with a nonconstant K, if we were to superimpose on this figure a
plot of K as a function of equal biaxial stretch, the intersections of the two plots would
mark values of stretch for which we should expect curves of asymmetric solutions to
branch off. That is, at the corresponding point in Fig. 2, we should expect a curve of
equilibria to branch from the boundary into the interior of the cuspoidal region. Such
curves are displayed in Fig. 2 for a range of positive constant values of K.

It is interesting to repeat this analysis for a strain-energy function expressed in
terms of the principal stretches rather than the strain invariants. The analog of eqn
(2.8) is in this case

W, - W, 1
+ Wv = 213)
e o 0 (
where
_ W, 1, v)
Wi = an ’

etc. When the strain-energy function is of the Valanis—-Landel form[7] for which

1
W= w) + w(p) + w (:;I) , (2.14)

where w( ) is a constitutive function called the V-L function[8], eqn (2.8) becomes

w'(A) — w(p) + 1 W' 1
AR AZp? AR

=0, (2.15)

where a prime indicates a derivative of the V-L function. Pairs of stretches, (A, p),
which are roots of this equation determine asymmetric solutions of the symmetric-
loading problem. The branches of asymmetric solutions intersect the curve of sym-
metric solutions at a point given by this equation in the limit as p. approaches \: an
equation analagous egn (2.12), viz.
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A
A - F) = 0. (2.16)

where the double prime indicates a second derivative. Of course. since a Mooney—
Rivlin strain-energy function may be expressed in a Valanis-Landel form by setting

R 1
w(h) = Cy(A- = 21logA — 1) + Ca <P+2]og}\* l) (2.17)

if this form is used in eqn (2.15) and X is substituted for C,/C., one obtains eqn (2.9).
The constant terms and the logarithmic terms are included in the V-L function as a
convention: they do not lead to any physical consequences[7].

3. EQUILIBRIA WHEN K IS NEGATIVE

It is evident from Fig. 3 that for some values of K there are two intersections of
branches of asymmetric solutions with the curve of symmetric solutions. This occurs
for values of K between zero and the minimum value on the curve of Fig. 3. The
minimum can be calculated from the derivative of eqn (2.12), which gives

Amin = 0.81428, Kuin = —1.3905. (3.1

Within this range of values of K, eqn (2.9) determines a curve of two branches in the
plane of A and . Figure 1 shows these two branches for the case K = —1, curves
which are typical for this range of K. Notice that one of these branches intersects the
curve of symmetric deformations at a stretch of less than one. That is to say, the
asymmetric solutions occur for compressive forces, as well as tensile forces.

When K is at its minimum value in Fig. 3, there is again only one branch point
from the curve of symmetric solutions. In this case two branches of asymmetric so-
lutions osculate at the intersection with the curve of symmetric solutions. Figure 1
illustrates this also.

For values of K below the minimum value of Fig. 3, there are no physically in-
teresting solutions of eqn (2.12). The asymmetric solutions fall on two branches which
do not intersect the curve of symmetric solutions. Figure [ illustrates these branches
in the case K = —2.

It does not seem to make physical sense for K to be negative for all values of the
stretches. Consider, for instance, that according to eqns (2.6). when the square of a
stretch is equal to — K, the corresponding force is zero. Indeed the situation for negative
K appears to be of less practical interest than that for positive K. In general, typical
rubbers in the deformations commonly observed seem to display nonconstant values
of K which are positive and range between limited values. In a typical example[8], this
range might be from 4 to 10. Some observations of rubber at very small deformations
have suggested that K may possibly take on negative values in extreme cases[9]. Other
observations on torsion of plastic cylinders suggest that these data also lead to negative
values of K when analyzed in terms of time-dependent elasticity[10]. Therefore the
subject is not completely devoid of interest. We will not pursue it further, however.
in this work.

4. STABILITY

Considerations of stability tell us which of the possible equilibria will actually occur
when forces are applied. The symmetries of the problem in our case offer a particularly
simple way to see that for constant positive finite K when, in terms of invariants, only
one asymmetric equilibrium is possible, that the asymmetric equilibrium is stable and
that the symmetric equilibrium is unstable. Let us assume, as seems reasonable. that
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Fig. 4. Force ratio, F./F», for F) fixed and p varied.

the stretch of the symmetric deformation in equilibrium with two equal forces, fo, is
bracketed by the two stretches of the asymmetric equilibrium under the same symmetric
loading; that is, if A, is the stretch in the symmetric case and A,, ., are the stretches
in the asymmetric case, then

Aa = A5 > o 4.1)

We imagine the square elastic sheet loaded in one direction with a fixed load f,, while
the other direction is constrained to sweep through a range of stretches, including the
range between the values A, and p,,. If the ratio of the force needed to produce these
stretches to the fixed force fo is plotted against the stretch, we obtain a curve such as
that shown in Fig. 4. The curve can intersect the line f/fo = 1 at only three points,
since by hypothesis there are only three different stretches which occur in equilibria
under this loading. Realistically, at p,,, the curve must be rising from the state of simple
extension and at A, the curve must also be rising to an infinite force for infinite ex-
tension. Excluding the highly unrealistic circumstance that the curve has slope zero at
these intersections, it must cross at A, with a negative slope. Figure 4 indicates that
the application of a force fy to the constrained side will cause it to move from the
symmetric solution at A, to the asymmetric solution at A,. On the other hand, a force
of f, is not sufficient to stretch the sheet from the asymmetric solution at w,, to the
symmetric solution at A,. ‘

This discussion of stability suggests that for any realistic strain-energy function,
the asymmetric solution will occur whenever it is a possible equilibrium. Of course,
the argument is perhaps a trifle naive; for instance we have not examined the possibility
of inhomogeneous deformations or equilibria for which the principal stretches are not
in the direction of the forces. Chen[11] has outlined a deft method for improving this
argument based on some of his results. Alternatively, Shield’s analysis[5] shows also
that in these circumstances the symmetric equilibria are unstable. Furthermore, if the
strain energy is known, we can actually calculate the curve of Fig. 4 and demonstrate
the instability directly. Figure 4 is, in fact, a plot of such a calculation for a Mooney-
Rivlin material with K = 5 and for a force such that F = 25 and X, is 2.3662. With the
force fo in the A direction, we calculate p as a function of A to get

V(A2 + 4KA*) + A
p? o= 7 : 4.2)
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where
S

A= Car KA\ + 1, (4.3)

and C. is the coefficient of 11 in the Mooney—Rivlin strain-energy function. From eqn
(2.6) we can calculate the ratio f/f, to get

FOANR —TK 4N
fo AR - 1K+ p*’

(4.4)

Equations (4.2), (4.3) and (4.4) can be used to plot this ratio against p as we have done
in Fig. 4.
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5. A CONVENIENT CALCULATION OF ASYMMETRIC EQUILIBRIA

From eqn (2.6) we have

fx }\4“2 -]
=22 J IR TR+ e, (1aA)
Fx Wa N p ( [T
fu )‘2""4 —- 1 2
F, = =2E (k4. (1bA)
. tWs A“p." (

When f, = f..then F, = F,, = F and we can eliminate K between egns (1A), to get

S N - DRt - )

F )\Z}LI(A“}L] + 1)

On the other hand, if we eliminate F from eqns (1A). we get

Ao = AW = D - KR+ D (3A)
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or, equivalently
A+ = - KR+ 1) ‘ (4A)

In each of eqns (2A), (3A) and (4A) the quantity A — ., and hence the symmetric equilibrium, has been
factored out. By combining eqns (2A) and (3A) we can generate the concise equation

1+ KN\2p?

F=0+ :
N+ ) N

) (5A)

which is valid for asymmetric equilibria. We can generate an equation expressing F as a function of K and
Ap alone by combining eqns (4A) and (S5A), viz.

1 + Ka2p?

F=VIap - Ky (N + 1] Nt

(6A)

With this equation, a value of A can be found corresponding to given values of F and K. Let this value of
Ap be designated as b, then we have the following:

Ae=b, A+ p= Vb -K®+ 1) A)
If we eliminate u between the eqns (7A), we obtain a quadratic equation in A, namely
M- VIb-K @&+ DA+ b=0. (8A)
This equation can easily be solved to give

Vb - KB+ D) + VIbY - 3) — K(b® + 1)]

A
2 ) (98A)

- K) (5 + 1] = VbW - 3) - Kb
R (R SIUERD 2[l;u; 3) - K@ + 1] (9bA)

Equations (3A) may also be viewed as parametric equations for plotting the asymmetric soiutions for constant
K as in Fig. 1. Analogous equations for plotting in the plane of deformation invariants I and 1I are

I=bb -1 - Kb+ 1)+ blz , (10aA)

3 o_ - K b.\
TRt at = rby (10bA)




